IP Telephony Engineering Principles
Agenda

- Network Region Design
- IP Telephone Operation
- QOS across the Enterprise
- Bandwidth Considerations
- Call Admission Control
- Media Encryption
- IP Trunking & PSTN Fallback

Note: Discussion will focus on H.323 and not SIP but the concepts with respect to QOS are the same with different ports in some cases.
Typical IP Telephony WAN deployment

MPLS (FR) Based Network
Sample IP Connectivity and Functions

- PSTN
- IP Phone
- IP
- Media Processor (voice stream/DSP farm)
- C-LAN (signaling)

Integrated C-LAN & Medpro

Integrated C-LAN & Medpro
TN Gateway IP Interfaces

IPSI Card: IP Server Interface Card
• Provides Control Interface for MG
• Delivers Tone and Call Classifications Resources

C-LAN: Control LAN card
• Handles signaling for IP Phones and Trunks
• Handles signaling for Adjuncts (Audix, CMS)
• Allows Remote Administration
• Dedicated resource, design to 300 sessions

MedPro Card: Media Processor Card
• Converts TDM based media in IP based
• Supports Codecs: G.711, G.729, G.723
• Supports from 32 to 64 simultaneous sessions
• Dynamically allocated resource
H.323v2 Protocol Stack

Control	Data	Audio	Video	Audio/Video Control	Control
H.225 | H.245| G.7XX | H.26X | RTCP | Gatekeeper
 | T.120 | | | | Registration Admission Status (RAS)
TCP | UDP | | | |
IP
Network Region Design
Network Regions

- Binds Endpoints to a Specific Location
- Dial Plan adjusted by Network Region (useful for E911, local calling)
- Determines what CODEC needs to be used for Intra-Network-Region calls
- Determines what CODEC needs to be used for Inter-Network-Region calls
- Can determine what VoIP Monitor Manager is used
- Determines what QOS settings to be used

- Customize layer 2, 3, & 4 settings
WAN and Network Regions

Subnet and Region Details

<table>
<thead>
<tr>
<th>FROM</th>
<th>(TO Address)</th>
<th>Subnet or Mask</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.0</td>
<td>-</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>192.168.2.0</td>
<td>-</td>
<td>24</td>
<td>2</td>
</tr>
</tbody>
</table>

Diagram Details

- **LAN/WAN**
- **C-LAN**
- **MedPro**
- **G.711**
- **G.729**
- **PSTN**

Subnet and Region Details:

- **192.168.1.0**
- **192.168.2.0**

Subnet Mask:

- **24**

Region:

- **1**
- **2**
DSP Resource Allocation by Call Type

<table>
<thead>
<tr>
<th>Codec/ Call Type</th>
<th>Capacity Points</th>
<th>Max Calls / Media Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W/o encryption / W/ AES encryption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W/o encryption</td>
</tr>
<tr>
<td>G.711 Pass-through</td>
<td>1</td>
<td>64 / (TN2302&MM760)</td>
</tr>
<tr>
<td>Clear Channel</td>
<td></td>
<td>32 / G350</td>
</tr>
<tr>
<td>G.729 & G.723 VoIP</td>
<td>2</td>
<td>32 / (TN2302 & MM760)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 / G350</td>
</tr>
<tr>
<td>Fax Relay</td>
<td>4</td>
<td>16 / (TN2302 & MM760)</td>
</tr>
<tr>
<td>Modem Relay T.38</td>
<td></td>
<td>8 / G350</td>
</tr>
</tbody>
</table>

Notes:
(A) TN2302AP < HV10 (aka TN Media Processor) do not support data transmission other than Avaya patented transport for fax.
(B) A G700 Media Gateway has the equivalent of an MM760 embedded in the system. The G350 has the equivalent of half that.
DSP Allocation Rules

1. TN Media Processor already in use by the phone
2. H.248 MG already in use by the phone
3. Preferred region and preferred PN, TN Media Processor
4. Preferred region in any PN, TN Media Processor
5. Preferred PN in any region, TN Media Processor
6. Preferred region, H.248 MG
7. Any region, TN Media Processor
8. Any region, H.248 MG
CLAN Design Considerations

- Provide logical mapping from IP Telephone NR to CLAN pool regions
- Maximum of 300 registered endpoints per CLAN even in failover scenario (N+1)
- Have at least 2 CLANs for MGC list; for max CLAN resiliency use 3
- Maximize operational efficiency by minimizing the number of locations in each pool
- Keep it simple or make it manageable
Designing for CLANs -- Logical Pooling

IP Telephones

NR 201

CLAN Resource

NR 101

H.248 Media Resource

NR 102

TN Media Resource

NR 202

NR 103

NR 1
CLAN Pooling

Benefits
- More Granular Registration Control
- Better Trouble Isolation
- Better recovery control
- Greater flexibility in the application of network policy

Negatives
- CLANs registrations will not be balanced across network regions
- Need more CLANS
- Greater operational complexity
- Operational changes may require re-design
NR Design without “Ghost” Region

Location 1/NR 1
Controlling S8700 IP
Connect and 100 IP Telephones

Location 2/NR2
G700 MG with LSP and 50 IP Telephones

Location 3/NR3
G350 MG with LSP and 25 IP Telephones

The WAN link speeds for NR 2 and 3 are misrepresented by the CAC values.

MPLS Based Network

1.544M
1024K
512K
1024K
512K
512K
“Ghost Regions”

• In order to correctly define the WAN link for each site, a “Ghost Region” is configured so the CAC values are correct
 - All 3 of our Network Regions in the previous example would directly connect to the Ghost Region
 • The interconnection from NR 1 to NR 2 would intervene through the Ghost Region
 - By using the Ghost Region configuration, the CAC bandwidth limits would be correctly defined for the actual WAN link and prevent over subscription
NR Design with “Ghost” Region

Location 1/NR 1
- Controlling S8700 IP
- Connect and 100 IP Telephones

Location 2/NR2
- G700 MG with LSP and 50 IP Telephones

Location 3/NR3
- G350 MG with LSP and 25 IP Telephones

The MPLS WAN is now represented by NR 5 in Communication Manager and the topology is correctly depicted by the CAC values.
Network Region 5 is used as the Ghost Region (for actual implementations, a higher region may be more appropriate to allow for scalability).

The only region that NR’s 1-3 directly connect to is NR 5 and intervene to the other regions. There are no actual resources in NR5, it is more of the WAN cloud representation.

All WAN connections are now correctly defined and Communication Manager has the correct interpretation of the topology.
IP Telephone Operation
Power over Ethernet – How does it Provide Power?

- IP Phones have been 802.3af compliant for years
- Performs phone detection
- It applies power to the endpoint (IP phone) using the signaling pairs
- If the endpoint is removed or the link is interrupted
 - Power is shut off
 - the detection process starts again

1. Line inquiry
2. Endpoint ‘sends’ answer
3. Power supply calculation
4. Power opened on port
Power Consumption

Watts (IEEE 802.3af -2003@ 48V)

<table>
<thead>
<tr>
<th>Model</th>
<th>Typical</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>4601/4602</td>
<td>3.5</td>
<td>4.6</td>
</tr>
<tr>
<td>4602SW</td>
<td>4.1</td>
<td>5.0</td>
</tr>
<tr>
<td>4610SW</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>4620</td>
<td>7.7</td>
<td>9.9</td>
</tr>
<tr>
<td>4624</td>
<td>5.9</td>
<td>8.0</td>
</tr>
<tr>
<td>4620SW</td>
<td>4.6</td>
<td>5.75</td>
</tr>
<tr>
<td>4624</td>
<td>4.9</td>
<td>6.45</td>
</tr>
<tr>
<td>4621SW/4622SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4625SW</td>
<td>7.8</td>
<td>9.42</td>
</tr>
<tr>
<td>4630SW</td>
<td>11.8</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Typical is measured off-hook. Worst Case is analytical. Except the 4601 and 4602 all telephones had a PC attached at 100Mbps. The EU24 adds less than 1W to the 4620 and 4620SW numbers. The EU24BL can not be used with POE, use the 1151B. The 4620SW CR can be identified by the ethernet jacks that point down, rather than directly back out of telephone.
DHCP Process – Dual VLAN

User PC

DHCP Discover

Offer IP address in VLAN 10

DHCP Server

Offers:
- IP ADDR
- Subnet Mask
- Default Gateway

User PC

DHCP Discover

Offer IP address in VLAN 10

DHCP Server

Offers:
- IP ADDR
- Subnet Mask
- Default Gateway
- Site Specific Option (176):
 - GateKeeper IP Addr (8)
 - GateKeeper Port
 - QoS Parameters:
 - $802.1Q = 1$
 - $VLAN = 11$
 - $802.1p = 6$
 - TFTP Address (8)

Once the phone knows what the voice VLAN is, it will boot into that VLAN first
IP Phone registration

Process

DHCP Discover

DHCP Server

Offers:
- IP ADDR
- Subnet Mask
- Default Gateway
- Site Specific Option:
 - GateKeeper IP Addr (8)
 - GateKeeper Port
 - QoS Parameters
 - TFTP Address (8)

TFTP Get

TFTP Server

TFTP Puts:
- Boot Code (First Time)
- Application Code (First Time)
- Config (e.g. QoS)

TFTP Put

Delivery

Registration, Admission, Status

Validates:
- Extension
- Password

TFTP

Provides:
- Access to medias
- Feature / Functionality

Enter Extension
Enter Password

Enter Extension
Enter Password

H.323 and Feature Functionality
DHCP Considerations

- Telephone Firmware 2.1+ offers optional use of IP address after lease expires
 - Does not protect against power failure or reboot
 - Based on administrable DHCPSTD parameter
 - DHCPSTD = 0 means “Despite the DHCP Standard, continue using the current IP address after the lease expires, but:
 - Send DHCPREQUEST about every minute
 - Send ARPREQUEST every 5 seconds
 - If ARP REPLY received, set IPADD to 0.0.0.0 and re-initiate DHCP Discovery”
 - DHCPSTD = 1 means “Follow the DHCP Standard (RFC 2131, Section 4.4.5); give up the IP address immediately if DHCP lease expires”
DHCP Considerations

- Each subnet requires a DHCP scope.
- For clients not on the same subnet as the DHCP server, enable DHCP relay on the router interface for the client subnet (i.e. “ip helper-address”)
- Embedded DHCP server within G350 to support IP phones and local IP stations
- No plans to support G700 DHCP
- Can use local router as a DHCP server

```plaintext
service dhcp
ip dhcp pool "Miami branch office"
  network 10.10.10.0 255.255.255.0
default-router 10.10.10.1
lease 120
option 176 ascii MCIPADD=X.X.X.X,MCPORT=1719,TFTPSRVR=X.X.X.X
ip dhcp excluded-address 10.10.10.1
```
TFTP Server

- Used for upgrades and optional configuration files
- Not a point of failure for basic telephony operation
- Possible point of failure for additional features
 - Review each configuration option to be used in order to determine impact of failure
- Embedded TFTP server within G250/G350 to optimize local IP-phones upgrade process
 - Limited space in NVRAM
What happens during Registration?

• Registration starts, GRQ, GCF, RRQ
• Phone asking user for Login (extension) and password
• Phones sends request for registration for the extension
• Server sends to the phone an encrypted message to validate password
• Password is validated, Server sends a RCF, and features to the phone and all relevant timers
• Phone sends the supported CODECS and other relevant parameters
• Based on the C-LAN or the Phone’s IP address, it is set to a specific Network Region
H.323 Registration Messages

Endpoint

GRQ

GCF/GRJ
Gatekeeper returns IP registration address to use (CLAN Load Spreading)

RRQ

RCF/RRJ
Gatekeeper returns Alternate Gatekeeper Addresses

URQ

UCF/URJ

Gatekeeper

IP Telephone prompts for Extension and Password
• Communication Manager sends as the RAS address in the GCF the IP address of a CLAN in the same network region as the CLAN that received the GRQ.
• Communication Manager software will select the registration address in a cyclical fashion.
• Use this ability to balance registration across multiple CLANS.
• IP endpoints will accept an address in the GCF and use it for that registration.
• Balancing only occurs during registration; phone does not change CLANs during normal operation.
<table>
<thead>
<tr>
<th>Function</th>
<th>Messages</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endpoint</td>
<td>Gatekeeper</td>
</tr>
<tr>
<td>Discovery/Registration Phase</td>
<td>GateKeeper Request</td>
<td>H.225/RAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GateKeeper Confirm</td>
</tr>
<tr>
<td></td>
<td>Register Request</td>
<td>H.225/Q.931, H.245, CCMS</td>
</tr>
<tr>
<td></td>
<td>Register Confirm</td>
<td></td>
</tr>
<tr>
<td>Signaling Channel Phase</td>
<td>SETUP FastStart OLC, OLC, OLC...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALL PROCEEDING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFO (CCMS, Feature initialization)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONNECT (FastStart OLC=NULL)</td>
<td></td>
</tr>
<tr>
<td>Call Ready Phase</td>
<td>INFO (CCMS)</td>
<td>H.225/Q.931, H.245, CCMS</td>
</tr>
<tr>
<td></td>
<td>FAC (FastStart, OLC)</td>
<td></td>
</tr>
</tbody>
</table>
Communication Manager -- IP Station

Signaling

- H.225 RAS (Registration Admissions Status)
- DCP Call Control (tunneled over H.323)
- H.323 Call Control
- H.245 Media Control

Audio Path

C-LAN

MedPro

UDP

TCP
Upon first boot telephone registers with a C-LAN that it has received via DHCP. The CLAN tells the phones about the alternate gatekeepers available to the phone.

The phone tries to register with the second GK on the list, if that isn’t available it continues looking through the list until it successfully finds a GK.

When the first re-registration message is missed the phone accelerates the rate of sending those message until X consecutive messages are missed at which point . . .

Works similarly for H.248 controlled GWs
Avaya IP Telephone Use of Gatekeeper List

• IP Telephone looks at DHCP list and then the RAS list received from Communication Manager software to look for Alternate Gatekeeper addresses

• IP Telephone cannot register with LSP until an H.248 MG registers

• IP Endpoints now know about S8300(LSP) though DHCP or RAS process

• Communication Manager provides LSP addresses in RCF based on IP Phone Network Region.

• Need to administer each LSP that needs to register with S8700 (“change lsp” command)

• A network-region can have up to 6 LSPs.
46XX GK Search: What triggers a phone to search for another GK?

Default Settings:
- Idle Traffic Interval -- 20s
- Keep Alive Interval -- 5s
- Keep Alive Count -- 5

Graph showing the interaction between an Endpoint and a Gatekeeper (aka CLAN) with intervals and ACKs.
Unsuccessful Discovery Timer (Phone)

H.323 Link Loss Delay Timer (ACM)

Primary Search Timer (Phone)

Alternate Gatekeeper List

- CLAN1
- CLAN2
- CLAN3
- LSP1
- LSP2

On-hook retry

Off-hook retry

Repeat

ACM Drops endpoint's call state

Phone Reboots

Note: In this example, the Active Gatekeeper (Server) has 3 CLANs and 2 LSPs.

Timer parameters can be found in “system-parameters ip-options” and “ip-network-region” forms. LSP list is found in IP-network-region.

During signaling channel loss active calls are preserved. Endpoint attempts to re-register with the original servicing gatekeeper during call duration.
46XX GK Search

Server/CLAN

TCP KA

TCP ACK

TCP KA

TCP ACK

TCP KA

20s on 46XX

20s on 46XX

5s once 1st TCP KA is missed

Outage: Server Or Network

IP Telephone

Phone Checks for new GK
Scenario 2: Active IP call to PSTN

1) Wan goes down for 2 minutes.
2) During outage, gateway KAs expire after ~45 seconds, primary search time begins on gateway.
3) H.248 link loss timer begins shortly after gateway primary search timer (seconds).
4) IP Phone- KAs also expire after ~45 seconds, and H.323 link loss timer also begins shortly after gateway primary search timer (seconds).
5) Because WAN recovery occurred prior to the timer expiring phone call is re-established “in progress”

Gateway h.248 App. Keep Alive = every 14 seconds, 45 second retry interval.
IP Phone TCP KA = every 20 seconds, 5 retries, 5 seconds each.
Timers in Operation (Timers Expire)

IP Phone TCP KA = every 20 seconds, 5 retries, 5 seconds each.

Gateway h.248 App. Keep Alive = every 14 seconds, 45 second retry interval.

IP Phone TCP KA = every 20 seconds, 5 retries, 5 seconds each.

Scenario 2: Active shuffled IP call: IP Phone-1 to IP Phone-2.

1) Wan goes down for 8 minutes.

2) During outage, gateway KAs expire after ~45 seconds, primary search time begins on gateway (5 minutes). No CLANs to find within first 5 minutes.

3) H.248 link loss timer begins shortly after gateway primary search timer (seconds).

4) IP Phone- KAs also expire after ~45 seconds, and H.323 link loss timer also begins shortly after gateway primary search timer (seconds).

H.323 PST = 5.5 min
H.248 PST = 5 min

H.323 Link Loss = 6 min
H.248 Link Loss = 6 min
Timers in Operation (Timers Expire)

Scenario 2: Active shuffled IP call: IP Phone-1 to IP Phone-2.

5) Gateway primary search timer expires after 5 min, gateway moves beyond TP, gateway registers to LSP, and MGC resets.

6) Phone Primary Search Timer expires after 5.5 minutes (transitions to LSP)

7) H.248 an H.323 Link Loss timers expire. Resources are liberated on primary call server. Calls can no longer be re-instated.

8) WAN returns after 8 total minutes. Phones now registered to discrete call processors.

IP Phone TCP KA = every 20 seconds, 5 retries, 5 seconds each.

Future: Connection Preserving Transition
QOS Across the Enterprise
What happens when you put voice in your data network?
• Data Communication is Bursty in Nature
• Packet Networks are Asynchronous
• Voice is a Real-Time Application
• Voice Transmission is Synchronous

What is the solution?
• A Voice ready Network needs QoS
• Long Term Solution should be Policy Based

Avaya QoS solution:
• Layer 2: 802.1p/Q – VLAN and priority inside the VLAN
• Layer 3: DiffServ (TOS byte), RSVP – WAN queuing, Bandwidth Reservation
• Layer 4: UDP Port Range – No suggested range
• 100% Standards Based
Standards Based Class of Service

Layer 2 (Ethernet)
- MAC Layer Header
- DAddr, SAddr, 802.1p,Q

Layer 3 (IP V4)
- Network Layer Header
- TOS, SAddr, DAddr

Layer 4 (TCP or UDP)
- Transport Layer Header
- Port Number

802.1p specifies priority desired
TOS field specifies service level desired
Saddr/Daddr or Saddr/Daddr/Port # identifies RSVP flow
Port Number identifies application/session
Protocols and Ports

Registration (H.225 RAS) = UDP 1719
Signaling (H.225 Q.921) = TCP 1720
Voice (RTP) = UDP 2048-65535 (configurable)
Media Gateways (H.248) = TCP 2945
Port networks ("classic" media gateways) = TCP 5010
QoS Requirements

• Delay (one way between endpoints):
 • ITU spec is 150ms or less
 • Avaya recommends 80ms or less for “business quality audio”
 • Delay over 150ms could be acceptable depending on customer expectations, codec, etc.
 • Delay over 250ms causes “talk over” problems

• Jitter (variation in delay):
 • Less than 20ms recommended
 • Defaults can handle up to 30ms (dependent on sampling rate)

• Packet loss:
 • Less than 1% recommended
RSVP - Resource reSerVation Protocol

- RSVP is a QoS signaling protocol
- RSVP/Integrated-Services provides protection for the voice bearer channel in a loaded or congested network.
- IP Phones/Gateways request the network routers to reserve bandwidth.
- Routers act upon the request to allocate bandwidth according to QoS request.
- When bandwidth is reserved, the call is protected against other network traffic.
- This ensures good voice quality for the users.
1) RSVP enabled phone call is established.
2) RSVP disabled phone call is established.
3) When the network is loaded with emulated voice traffic:
 RSVP enabled bearer channel is protected exhibiting good voice quality
 RSVP disabled bearer channel is not protected exhibiting bad voice quality
When to enable RSVP

• If the customer wants a scenario where N calls get guaranteed service and the N+1th call competes with everything else, then RSVP is the best solution.

• But if the customers want a scenario where N calls get guaranteed service and the N+1th call is not permitted to go through, then Call Admission Control schemes need to be used.
So What If I’m Experiencing Poor Quality Voice

• Factors that need to be examined
 – Network Metrics (Packet Loss, Jitter, Latency)
 – Trunk connectivity (Digital, Analog)
 – DSP resources (Medpro, Gateway)
 – End User Device (Headset, Terminals)
 – Environmental

• Psychology may be a factor
 – People are more alert after a change
 – Feature Issues
Symptoms & Possible Causes

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo</td>
<td>Trunks, Latency</td>
</tr>
<tr>
<td>Tininess</td>
<td>Packet Loss, Jitter</td>
</tr>
<tr>
<td>Static</td>
<td>Packet Loss, Stations</td>
</tr>
<tr>
<td>Muffled, Garbled</td>
<td>Stations</td>
</tr>
<tr>
<td>Volume Levels</td>
<td>Trunks, Environment, Stations</td>
</tr>
<tr>
<td>Clipping, “Breaking up”</td>
<td>Packet loss, Silence Suppression</td>
</tr>
</tbody>
</table>
VoIP Monitoring Manager (VMON)

RTCP (Real Time Control Protocol) – RFC 1889
QoS Monitoring with VMON

• **What it does?**
 - Record call statistics (delay, jitter and packet loss) on some or all calls (configurable by network region)
 - Real-time view or Historical (up to 30 days at this time). Search by extension number, time range or IP address
 - Configurable SNMP traps for different combinations or jitter, delay and/or packet loss thresholds

• **What do I get out of it?**
 - Baseline: What did things look like before or after the change?
 - Troubleshoot: Comparing different groups of endpoints.
 - Proactive Monitoring: Be alerted if service falls below a certain level.
VoIP Monitoring Manager (VMON)
VoIP Monitoring Manager (VMON)
Bandwidth Considerations
Shuffling

Call set up (duration usually only 1 to 5 sec):
Caller hear dialtone and then ring-back from the Tone Clock

Signaling ~ 50 bps
Media ~ 80 Kbps

2nd building

Avaya Call Processor knows that now it needs to mix the calls, so it redirects the media piece off the phones and into the Media Processor (MedPro).

Call is answered (duration: typically 3 minutes):

Avaya Call Processor (ACP) tells the phones to send voice packets to each other, but keeps signaling.
Conferencing Scenario (Pre ACM 3.0)

NR 1
- Digital Endpoint
- MedPro Resource A

NR 2
- IP Endpoint
- MedPro Resource A

Add 2nd IP Call

NR 1
- Digital Endpoint
- MedPro Resource A

NR 2
- IP Endpoint
- MedPro Resource A
Conferencing Scenario (ACM 3.0 and later)

NR 1
Digital Endpoint
MedPro Resource A

NR 2
IP Endpoint
MedPro Resource A

Add 2nd IP Call

NR 1
Digital Endpoint
MedPro Resource A

NR 2
IP Endpoint
MedPro Resource A

IP Endpoint
Bandwidth Considerations

- Bandwidth impact on a LAN/WAN depends on
 - CODEC used
 - G.711 which produces 64Kbps voice samples
 - G.729 which produces 8 Kbps voice samples
 - G.723.1 which produces 6.3 and 5.3 Kbps voice samples
 - Frame size used
 - G.711 uses 10ms frames (80 bytes)
 - G.729 uses 10ms frames (10 bytes)
 - G.723 uses 30ms frames
 - Number of Frames per packet
 - Protocol Overhead

Minimize # codec sets

- **LAN Codec Set**
 (G.711 20ms samples, modem pass-through)

- **WAN Codec Set**
 (G.729 30ms samples, modem relay)
G.711 Analysis

- G.711 uses 64Kbps voice samples
 - 64000bps equals 64 bits per ms
 - 64 bits per ms equals 8 bytes per ms
- A G.711 Frame is 10 ms or 80 bytes
- Protocol overhead

- Uncompressed Real Time Protocol (RTP) 12 Bytes
- User Datagram Protocol (UDP) 8 Bytes
- Internet Protocol (IP) 20 Bytes
- Layer 1 and 2 Ethernet 26 Bytes
- TOTAL 66 Bytes
Ethernet Header Breakdown

- Ethernet has the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble and 1 byte start of frame delimiter</td>
<td>8</td>
</tr>
<tr>
<td>Ethernet (Type, MAC SRC, MAC DST)</td>
<td>14</td>
</tr>
<tr>
<td>802.1Q (priority and VLAN)</td>
<td>4</td>
</tr>
</tbody>
</table>
Data Network Impact of Active G.711 IP Call

<table>
<thead>
<tr>
<th>G.711 (64Kbps)</th>
<th>Packet Size</th>
<th>Audio Payload (Codec Frame size * Packet Size)</th>
<th>Total Packet Size (Audio Payload plus packet overhead)</th>
<th>Total Bandwidth (Kbps) (Total Packet Size * 8 / packet size)</th>
<th>Target Delay (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 ms</td>
<td>80 Bytes</td>
<td>146 Bytes</td>
<td>116.8</td>
<td>62 ms</td>
</tr>
<tr>
<td>2</td>
<td>20 ms</td>
<td>160 Bytes</td>
<td>226 Bytes</td>
<td>90.4</td>
<td>72 ms</td>
</tr>
<tr>
<td>3</td>
<td>30 ms</td>
<td>240 Bytes</td>
<td>306 Bytes</td>
<td>81.6</td>
<td>82 ms</td>
</tr>
<tr>
<td>4</td>
<td>40 ms</td>
<td>320 Bytes</td>
<td>386 Bytes</td>
<td>77.2</td>
<td>92 ms</td>
</tr>
<tr>
<td>5</td>
<td>50 ms</td>
<td>400 Bytes</td>
<td>466 Bytes</td>
<td>74.5</td>
<td>102 ms</td>
</tr>
<tr>
<td>6</td>
<td>60 ms</td>
<td>480 Bytes</td>
<td>546 Bytes</td>
<td>72.8</td>
<td>112 ms</td>
</tr>
</tbody>
</table>
Bandwidth Minimization

• Three approaches to minimize bandwidth
 – Choose a low bit rate audio codec
 – Combine multiple audio frames into one packet
 – Suppress transmission of silence
 – Use header compression

• Lower bit rate codec can degrade quality and increase processing

• Combining multiple audio frames in one packet reduces bandwidth required

• Combining multiple audio frames in one packet increases delay
Bandwidth for Different Size Voice Samples

<table>
<thead>
<tr>
<th>Sample Size (ms)</th>
<th>G.711</th>
<th>G.729</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>96.0</td>
<td>40.0</td>
</tr>
<tr>
<td>20</td>
<td>80.0</td>
<td>24.0</td>
</tr>
<tr>
<td>30</td>
<td>74.7</td>
<td>18.7</td>
</tr>
<tr>
<td>40</td>
<td>72.0</td>
<td>16.0</td>
</tr>
<tr>
<td>50</td>
<td>70.4</td>
<td>14.4</td>
</tr>
<tr>
<td>60</td>
<td>69.3</td>
<td>13.3</td>
</tr>
</tbody>
</table>

- Default is 20ms (which is the recommended setting for most situations)
- Smaller samples make it less efficient (more bandwidth consumed)
- Larger samples make it more efficient… BUT at a cost….
 - Increases latency
 - A greater amount of voice is lost if packet loss occurs
Full and Half Duplex Facilities

Full Duplex: Transmit and Receive Simultaneously
(WAN Facilities and Switched Ethernet)

AND

Half Duplex: Can Either Transmit or Receive
(Shared Ethernet)

OR
Bandwidth Impact on Full Duplex Facilities

<table>
<thead>
<tr>
<th>CODEC TYPE (30ms Packets)</th>
<th>A and B Both Suppress Silence</th>
<th>A Suppresses Silence and B Does Not</th>
<th>Neither End Suppresses Silence</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Talking to B 80 Kbps</td>
<td>➡️</td>
<td>➡️</td>
<td>➡️</td>
</tr>
<tr>
<td>0 Kbps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Talking to A 0 Kbps</td>
<td>➡️</td>
<td>➡️</td>
<td>➡️</td>
</tr>
<tr>
<td>80 Kbps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Talking to B 24 Kbps</td>
<td>➡️</td>
<td>➡️</td>
<td>➡️</td>
</tr>
<tr>
<td>0 Kbps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Talking to A 0 Kbps</td>
<td>➡️</td>
<td>➡️</td>
<td>➡️</td>
</tr>
<tr>
<td>24 Kbps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** SS and VAD conserve bandwidth at the price of voice clipping potential ***
Compression of RTP header

<table>
<thead>
<tr>
<th>Codec</th>
<th>Payload bytes/packet</th>
<th>Packets/sec</th>
<th>Avg WAN BW consumption (kbps)</th>
<th>% reduction w/o compression</th>
<th>% reduction w/ compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711 (64 kbps)</td>
<td>160</td>
<td>50</td>
<td>84</td>
<td>68.5</td>
<td>~18 %</td>
</tr>
<tr>
<td>G.729A (8 kbps)</td>
<td>20</td>
<td>50</td>
<td>27.5</td>
<td>13</td>
<td>~53%</td>
</tr>
<tr>
<td>G.723.1 (5.3 kbps)</td>
<td>20</td>
<td>33</td>
<td>18</td>
<td>9</td>
<td>~50%</td>
</tr>
<tr>
<td>G.723.1 (6.3 kbps)</td>
<td>24</td>
<td>33</td>
<td>19</td>
<td>10</td>
<td>~47%</td>
</tr>
</tbody>
</table>
Router Considerations
Router Throughput

What Factor Most Greatly Determines Router Performance?

Typical Data Application

Packet size - 60 to 1500 bytes
Average - ~ 300 bytes

Full T1 = \(\frac{1536K \times 2}{300 \times 8} \) = \(~ 1,280 \text{ PPS}~

Typical VoIP Application

Packet size - 86 bytes

Full T1 = \(\frac{1536K \times 2}{86 \times 8} \) = \(~ 4,465 \text{ PPS}~

Make Sure Your Routers Can Handle A Greater Number of PPS
cRTP, MLPPP Significantly More CPU cycles

Full duplex loading is uncommon for data environments, but ‘typical’ for voice.
WANs that Contain ATM

- For a G.729 Sample use 30ms samples instead of 20ms (more common)
 - Packet Rate reduced from 50 to 33.33 PPS
 - Still fits in 2 ATM Cells
- Effective ATM bandwidth
 - 2 cells * 33.33 PPS = 2 * 53 * 8 * 33.333 =
 - 28.26K / Call
 - 33.33 PPS / Call
- Advantages
 - Reduces Router CPU Load
 - Close to FR per call bandwidth

Little Known Fact:
Many SP Networks (including MPLS) Still Utilize ATM
Call Admission Control
Overview of Call Admission Control

- Provides ability to block Voice over IP (VoIP) calls that go between IP Network Regions
 - IP Network Regions generally interconnected by WAN links
 - WAN links are lower bandwidth facilities
 - IP Network Region pairs can be directly connected or indirectly connected via intervening IP Network Regions
- Blocking calls when bandwidth is full helps ensure Quality of Service (QOS) for existing VoIP calls
- Applies only to bearer traffic, and not to data or signaling traffic from CM or other customer traffic
- Does not apply within an IP Network Region
 - Unlimited bandwidth is assumed
Offer Considerations

- Available in ACM 2.0 and later
- Supported in Linux platforms (S8300, S8500, S8700)
 - All gateways
- One point of administration for system
 - No need to configure individual parameters across routers
- Not a substitute for other QOS (i.e. Diffserve, 802.1p/Q)
Call Admission Control Functionality

- Administer optional bandwidth limits between IP Network Regions
- Applies to all VoIP calls between the IP Network Regions for:
 - Stations
 - Trunks
 - Port Networks
 - Media Gateways
- CM software keeps track of bandwidth used for IP bearer traffic between IP Network Regions (direct or indirectly connected)
 - Direct use bandwidth on a single link
 - Indirect use bandwidth on multiple links
- Attempts to make VoIP connections that would cause bandwidth limits to be exceeded will be blocked
 - ACM 3.0 is targeted to include Alternate Routing
IP Network Regions Configurations -
Directly Connected

- IP Network Regions (NR) 1 and 2 and 3 are all directly connected
 - Administer bandwidth limits between NR1 and NR2, NR1 and NR3, and NR2 and NR3
IP Network Regions Configurations - Indirectly Connected

- Administer direct connectivity between NR1 and NR2, NR1 and NR5, NR1 and NR3, and NR3 and NR4
- Administer intervening regions for all others
 - For example, Basking Ridge connects to Highlands Ranch via the link to Lincroft, then via the link to Westminster, and then via the link to Highlands Ranch (e.g. 5 to 1 to 3 to 4)
 - Only 1 path can be administered
Administration of Call Admission Control

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
<th>rgn</th>
<th>rgn</th>
<th>codec-set</th>
<th>direct-WAN</th>
<th>WAN-BW-limits</th>
<th>Intervening-regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>y</td>
<td>256:Kbits</td>
<td>:NoLimit</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>y</td>
<td>256:Kbits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>2</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td>:NoLimit</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bandwidth Limits

- Bandwidth Limits can be administered in units of:
 - Number of connections
 - Kbits/second
 - Mbits/second
 - No limits

- Some networks are better suited for limits based on number of connections instead of bandwidth
 - Only one codec used between regions - use connections
 - Multiple codecs used between regions - use bandwidth
 - Silence suppression - use connections
Bandwidth Usage per call is a function of:

- Codec set (e.g. G.711, G.729, etc.)
- Packet size
- Assumes 7 byte L2 WAN header

Bandwidth Usage (kbits/sec)

<table>
<thead>
<tr>
<th>Packet Size</th>
<th>10ms</th>
<th>20ms</th>
<th>30ms</th>
<th>40ms</th>
<th>50ms</th>
<th>60ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711</td>
<td>102</td>
<td>83</td>
<td>77</td>
<td>74</td>
<td>72</td>
<td>71</td>
</tr>
<tr>
<td>G.729</td>
<td>46</td>
<td>27</td>
<td>21</td>
<td>18</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>G.723-6.3</td>
<td>NA</td>
<td>NA</td>
<td>19</td>
<td>NA</td>
<td>NA</td>
<td>13</td>
</tr>
<tr>
<td>G.723-5.3</td>
<td>NA</td>
<td>NA</td>
<td>18</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
</tr>
</tbody>
</table>
Additional Bandwidth Considerations

• In general, bandwidth is used in both directions – except for the following (one direction only):
 – Announcements
 – Music on Hold
 – Firmware download to port boards – uses bearer channel from CLAN board to port board

• No adjustment in bandwidth made for FAX calls
 – Uses bandwidth as determined when initialing setting up the call

• No adjustment for call on hold
 – Bandwidth is reserved

• No adjustment made for silence suppression
When Calls are Blocked via CAC-BL

• Calls blocked by CAC-BL (bandwidth limit) can be routed to an alternate destination via:
 - Hunting
 - Call coverage paths
 - Another trunk group as administered in routing patterns

• If blocked call is not routable, caller will get reorder tone when possible

• No automatic routing of blocked calls via PSTN facilities to the desired destination in CM2.0
 - Alternate routing targeted for Avaya Communication Manager 3.0 release
Alternate Routing Scenario

- **Network Region 1**
 - Incoming call signaled
 - PSTN
 - Network Region 2
 - IP
 - PSTN
 - Place trunk call from region 1 to region 2
 - Incoming ACD call

- **Network Region 2**
 - Alert
 - Select agent
 - No bandwidth
 - Answer trunk call in region 2
 - Answer ACD call
 - Set up voice path

In the given scenario, an incoming call is signaled in Network Region 1 and is routed through the PSTN and IP network to Network Region 2. If there is no available bandwidth, the system will select an agent, answer trunk calls in region 2, answer ACD calls, and set up a voice path.
Dynamic CAC

- Change CAC
- Voice paths to PSTN

- IP WAN “Impaired”
- Dial-backup (for example)

Avaya S8700 Media Server

LAN

IP WAN

PSTN
Media Encryption
What is Media Encryption?

- Encryption of the VoIP RTP bearer
- Uses H.235 extensions to H.323
- Encryption capabilities negotiated between H.323 Endpoints and H.323 Gatekeepers
- Avaya was the first to offer such security to VoIP customers (with AEA Media Encryption)
- CM2.0+ now includes encryption using the “Advanced Encryption Standard” (AES)
Why AES Media Encryption?

- AEA Media Encryption:
 - Based upon Avaya patented encryption algorithm

- AES Media Encryption:
 - AES is currently specified by the IETF as the required encryption algorithm for a new internet standard for secure RTP - SRTP.
 - SRTP employs AES encryption to encrypt RTP messages.
 - Will position Avaya products so that they can quickly transition to SRTP

- Some vendors proclaim to be SRTP compliant but in reality they only offer it between their most expensive phones - and not between gateways and phones.
How Media Encryption Works

• During establishment of the call signalling channel, H.323 Endpoint support for media encryption is specified in H.245 elements

• During call setup, H.323 Gatekeeper determines media encryption requirements for call (c.f. codec determination)

• If H.323 Gatekeeper determines that media encryption is to be applied to a call, it will specify via H.245/H.235:
 – What encryption algorithm to use
 – What key material to use
How Media Encryption Works

• The key material to use is encrypted prior to sending to the H.323 Endpoint
 – The encryption of the key material is done using 3DES
 – The station security code/PIN is used as the key for the 3DES encryption

• Encryption of the VoIP RTP payload is between:
 – IP Endpoint – Gateway
 – IP Endpoint – IP Endpoint
 – Gateway - Gateway

• Media Encryption has NO effect on Voice Quality and NO noticeable effect on delay
How Media Encryption Works

AES Media Encryption

H.248 Link Encryption

S8500

G650

G350 w/S8300

Private LAN

Public LAN

IPSI

CLAN

TN Media Processor

ICC

VoIP

MGP

i960

How Media Encryption Works
Supported Platforms

- Server CSI, Server SI, Server R
- S8100, S8300, S8500, S8500, S8700
- TN2302AP - H/V3 ("TN Media Processor") and H/V11 ("Cruiser")
 - Due to the algorithmic complexity of AES algorithm, a 25% reduction in channel capacity on MM760 and TN Media Processor/Cruiser boards will result:

<table>
<thead>
<tr>
<th>Codec</th>
<th>None</th>
<th>AEA</th>
<th>AES</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711</td>
<td>64</td>
<td>64</td>
<td>48</td>
</tr>
<tr>
<td>G.729/723</td>
<td>32</td>
<td>32</td>
<td>24</td>
</tr>
</tbody>
</table>

(Once again): Media Encryption has NO effect on Voice Quality and NO noticeable effect on delay
Supported Platforms

- IP Telephones (4602/4606/12/20/24/30) – AEA Only
- IP Telephones (4610/20/30) - AES and AEA supported.
- IP SoftPhone/SoftConsole/Agent

- G350/G700
 - H.248 Link Encryption must be enabled (for media session key exchange)
• The Media Encryption feature is controlled by RFA
 - The ‘Media Encryption Over IP’ customer-option must be enabled for any Media Encryption features to work

• H.323 signalling-group Administration
 - Media Encryption must be enabled
 - A Passphrase must be specified

• ip-codec-set Administration
 - 3 options: aes, aea, none
Ip-codec-set Administration

IP Codec Set

Codec Set: 2

<table>
<thead>
<tr>
<th>Audio Codec</th>
<th>Silence Suppression</th>
<th>Frames Per Pkt</th>
<th>Packet Size(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: G.711MU</td>
<td>n</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>2: G.729B</td>
<td>n</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Media Encryption

<table>
<thead>
<tr>
<th>Media Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: aes</td>
</tr>
<tr>
<td>2: aea</td>
</tr>
<tr>
<td>3: none</td>
</tr>
</tbody>
</table>
H.323 signaling-group Administration

• Enable (y) ‘Media Encryption’ (default is disabled (n))

• Specify a ‘Passphrase’
 - 8-30 characters. Can include ‘!&*?;’^(),:.--’. At least 1 alphabetic and 1 numeric character
 - Must use the same ‘Passphrase’ on the Near-end and Far-end signalling-group forms
 - The ‘Passphrase’ is used to 3DES encrypt the key material prior to transmission to the other end (c.f. station security code/PIN)

• Media Encryption selection is still controlled by the administration of the near-end and far-end ip-codec-sets for the specific network regions
SIP Enablement Services Basic Administration
Agenda

- SIP Hardware/Configurations
- Building the Solution
- SES Configuration
- CM Configuration
- Avaya Endpoints
SIP Hardware

- S8500A can be upgraded to SES 3.x.x
- S8500B can only run SES 3.x.x and later
- S8500C can only run SES 3.1.1 and later
- In a duplex configuration both servers must be the same hardware platform
- The overall system can consist of a mixture of hardware platform types
- Communication Manager used as a “Feature Server” for SIP endpoints
Avaya SIP Enablement Services

Evolutionary path to standards-based Converged Communications

- Service Provider SIP Trunks
- PSTN, ISDN, PRI, etc.
- 3rd Party SIP Servers & Applications
- Private Network Trusted
- Public Network Untrusted
- sip:example.com
- Border Element
- Communication Manager
- Feature Server
- Gateways
- SIP
- CM Features
- 3rd Party SIP Endpoints
- Avaya SIP Endpoints
- IP, Wireless, Digital & Analog Endpoints
The SES can be comprised of 3 different configurations of servers

- **An Edge** knows about all users and which Home the users register to – speaks to all Homes and an “outbound proxy” – has “Master Administrator” privileges
 - Only 1 Edge per Domain

- **The Home** is where the client is registered to – speaks to the Edge, to other Homes through the Edge, and to CM
 - Up to 20 Homes per Edge

- **A Combo** has the functionality of both a Home and an Edge
 - Only 1 Combo in a solution

- Each of the above configurations can have a duplicated server option for redundancy
Edge and Homes

SIP Trunk

CM Feature Server

SIP Domain

Home/Edge Combo

SIP Phone

Distributed System

CM Feature Server

SIP Trunks

Home Servers

Edge Server

SIP Domain

SIP Phone

SIP Phone
SES 3.1
- Requires CM 3.x
- 3,500 users per Combo or Home SES (1GB RAM)
- 6,000 users per Combo or Home SES w/ High Performance Package
 - HPP is an additional 2GB RAM (3GB total) – Edge also needs 3GB
- 1 Edge SES per domain (simplex or duplex) (3GB RAM Required)
- 20 Home SES’s per administrative domain (i.e. avaya.com, example.com, etc.)
- Edge SES supports 120k BHCC (sunny day)

CM 3.1
- 16 SES instances max per CM
 - Constrained by max TLS connection limit in CM
 - Shared with other apps (Spectel, CTI, etc)
 - SES redundancy also counts towards TLS connection total
- Max SIP Trunks: S87xx = 5,000; S8700HP = 4000; S8500 = 800; S8300 = 450
 - Maximum concurrent SIP call legs
 - SIP-to-SIP call = 2 SIP call legs [SES-CM and CM-SES]
 - SIP-to-anything else (TDM, H.323, etc) = 1 SIP call leg [SES-CM]
- SIP OPS stations: Same as max station limit on CM (36k on S87xx)
 - SIP trunks are a bottleneck, limiting maximum simultaneous active SIP endpoints, limiting practical number of SIP OPS stations per CM.
Building The Solution
Building the Solution

• Basic Solution Components
 - Setup and config SES
 - Setup and config CM
 - Setup and config DHCP Server (optional)
 • option-176
 - Setup and config TFTP, HTTP, HTTPS server(s) (required)
 • 46xxsettings.txt – This file is required for a 46xx SIP phone to boot and register properly.
SES Configuration
SES Administration – Key Steps

• Default Profile
 – Location demographic information

• Host
 – Host Admin
 – Host Address Map
 – Host Contact

• Media Server
 – Media Server Admin

• User
 – Handle
 – Media Server Extension

• Set time, date and timezone
• Install license and authentication files
• Schedule system backups
• Enable RSA watchdog on x305 platform
• Test INADS connectivity – ensure that on duplex servers the modem number of rings has been modified to ensure the primary server answers first
SES Admin – System Properties

- https://<SES hostname>/admin
- Upon first opening the admin web page there will be an entry on the upper left called “Setup” – click on this to walk through configuration wizards
- SIP Domain is not the same as a DNS domain, although they can have the same syntax
- License host **MUST** be the physical IP address of the server the license resides on, not the logical address of the pair
Edit Host Page

- DB Password – same DB password set during install script
- Profile Service Password – must be unique for each host – this is used for communication between “trusted” hosts – used to prevent spoofing
- Listen Protocols – Protocols used by endpoints – select all
- Link Protocols – Protocol used between SES – SES – leave set as TLS
- Presence Access Policy – default to No – change to Yes to allow Presence
Edit Host Page......cont

- Minimum registration and expiration timer – endpoints must use value between these when registering
- Outbound Proxy – used as a “default” for calls going outside the domain
- Homes will set the OP to Edge and the Edge will set OP to the next device, such as a Session Border Controller
- Default Ringer, receiver, etc and VMM are specific to Toshiba endpoints (Japan only)
Edit Media Server

- Media Server Interface is a “friendly” name
- Link type should be TLS
- SIP Trunk IP = CLAN or procr
- CM login/password should be new static login on CM
- Password does not have **** - known issue
- CM FQD or IP – CM trunk address
- SMS FQD or IP – leave as localhost
Address Maps

- Media Server Address Maps are not needed for OPS extensions. They are needed for non-OPS endpoints being routed from SES to CM or MM.
- Host Address Maps can be used to route to 3rd party proxies for trunking to SIP Service Providers or Session Border Controllers:
 - Add a contact with correct information
 - Add a map “pattern” using Linux regular expressions e.g. `^sip:5[0-9]{3}`
 - Associate a contact to the map e.g. `sip:$(user)@192.168.0.25:5060;transport=udp`
Add a User

- Primary handle should be unique identifier comparable to email handle
- User ID can be left blank – it will default to Primary handle
- Password – 6 characters or more – since IP Phones can only enter numerical password, set accordingly
- SIP Softphone password can be alphanumeric
- First name, last name required
- Default Profile will populate address field, although only 1 default profile allowed
- Check Add Media Server extension to associate handle with CM station
Add a Media Server Extension

- Extension should be same as station number on CM
- Select appropriate Media Server from drop down of administered Media Servers
- Select Add
- Next screen select “continue”
- Always remember to click on Update to commit changes
Don’t Forget to Schedule Automated Backups!

- Under Data Backup/Restore
- Please remember to set automated backups accordingly
- Also remember to set time and date
CM Configuration
• Check RTU’s – OPS, IP Trunks, SIP Trunks
• Add Node Names
 – SES Server
 – CLAN
• IP Network Region
 – Location = Location of the SES server
 – Domain = Domain of the SES server
• SIP Signaling Group
 – Group Type = SIP
 – Transport Method = TLS
 – Near End Node = CM CLAN node name
 – Far End Node = SES node name
 – Listen Ports = 5061
 – Far End Domain = SES Domain
 – DTMF over IP = rtp-payload
• SIP Trunk Group
 - Group Type = sip
 - Service Type = tie
• UDP/AAR
• Route Pattern
• Off Premise Station Mapping
 - Station Extension = CM OPS extension number
 - Application = OPS
 - Phone Number = SES Media Server extension number
 - Trunk Selection = SIP trunk, AAR, or ARS
 - Configuration Set (if applicable) = SIP specific config set
• Ensure MedPro and CLAN are running the latest firmware
IP Network Region

- Authoritative Domain must be set to match the SIP domain in use in the solution – THIS IS THE MOST COMMONLY MISSED ADMINISTRATION STEP. CALLS WILL NOT WORK UNLESS THIS IS CORRECT
Signalling Group

- **Group Type = sip** - sets format of page
- **Transport method = tls**
- **Near-end/Far-end Node names** – need to have been administered on node-names page – ports = 5061
- **Far end domain = SIP domain on SES**
- **DTMF over IP = rtp-payload**
Trunk Group

- Set group type = sip
- TAC needs to be setup based upon dialplan analysis table – same as usual (Dial Access is not available)
 - “list trace tac nnn” is useful for troubleshooting
- Service Type = tie
- ROOF – defaults to 5000
 - 5 seconds until calling party will hear failure tone
Route Pattern

- Once UDP/AAR info has been administered follow standard Route Pattern setup
- Secure SIP should be set no - default, only set to yes if...
 - end to end conversation is using tls including endpoints OR
 - A SIP Softphone only solution and only if using tls
- Configurable option for SCCAN
 - If this is set to yes, Avaya IP Phones will not operate as expected
Business-Class SIP Telephony Features

Available to Any SIP Telephone

Station Side Features
1. Active Appearance Select
2. Automatic Call Back
3. Call Forwarding - All
4. Call Forwarding - Busy
5. Call Forwarding - No Answer
6. Call Forwarding Deactivation
7. Call Hold
8. Call Park
9. Call Park Answer Back
10. Group Call Pick-Up
11. Calling Party Number Block/Unblock
12. Conference on Answer
13. Consultation Hold
14. Directed Call Pick-Up
15. Distinctive Alerting
16. Drop Last Added Party
17. Exclusion
18. Extended Group Call Pick-Up
19. Group Paging
20. Held Appearance Select
21. Idle Appearance Select
22. Last Number Dialed
23. Malicious Call Trace Activation/Deactivation
24. Message Waiting Indication
25. Multiple Call Handling
26. Priority Call
27. Send All Calls
28. Transfer - Attended
29. Transfer - Unattended
30. Transfer on Hang Up
31. Transfer to Voice Mail
32. Auto-Intercom
33. Dial Intercom

Trunk Side Features
32. Automatic Alternate Routing
33. Automatic Route Selection
34. Announcements
35. Auto Answer Intercom
36. Automatic Call Distribution (ACD)
37. Bridged Appearances
38. Call Detail Records (CDR)
39. Centralized Attendant Service
40. Class of Restriction (Call Screening)
41. Class of Service
42. Codec Preferences
43. Crisis Alert to Digital Pager
44. Controlled Toll Restrictions
45. Dial Plan Expansion
46. Enhanced 911/CAMA Trunk Interface
47. Extension to Cellular (EC500)
48. Find-Me
49. Hospitality - Controlled Restriction
50. IP Traffic Measurements
51. Manual Signaling
52. Meet-Me Conferencing
53. Music on Hold
54. Night Service
55. Outgoing Trunk Queuing
56. Service Observing
57. 3-way Conference - 3rd Party Added
58. Transfer Recall
59. Trunk Group Hunting
60. Time of Day Routing
61. Uniform Dial Plan
62. Vectoring
Off-pbx-telephone feature-name-extensions

- These CM features can be integrated into all SIP endpoints in the solution
- Configure valid dialable station numbers to each feature
- On the SIP endpoint, dial the station for the feature you would like to activate
- Add individually desired features as Speed Dials on the phone with "friendly names"
 - i.e. SAC on, SAC off
Proxy Sel. Route Pattern = SIP Trunk Group Route Pattern number.

- This is required when you are routing calls to a domain that is not administered on the ip network region form.
- This is required for CM to resolve alphanumeric sip URIs.
• Type should be any 46XX IP
• A DCP station type should **NOT** be used for a SIP OPS station. If bridging is used for that station and the CM system has TTI enabled corruption can occur.
• Message Lamp needs to be correct
• Accept the default of 3 Call-Appr
 - If being used for SIP Softphone the number of appearances should be set to 5.
• No other changes need to be made
• Advanced SIP Telephony Features require administration of each used feature as a button on the OPS station form.
off-pbx-telephone station-mapping

- cha off sta nnnnn
- Station Extension from previous slide
- Application = OPS
- Phone number = media server extension on SES admin – should be the same as station extension
- Trunk selection can be aar, ars, or trunk id. The actual trunk id number could be specified – helps for troubleshooting
- Page 2 – set call limit to be same as Session Appearances on Phone – default is 2 – change to 3 and set Bridged calls to none
- Configuration set defaults are fine
Avaya Endpoints
Avaya Enpoints

- Avaya SIP Enabled Endpoints
 - 4602, 4610, 4620, and 4621
 - Avaya SIP Softphone
 - Avaya IP Softphone v5.2
 - Avaya IP Agent v6
• Avaya R2.2.2 SIP Phones
 – 4602, 4610, 4620, 4621 all supported with SIP firmware version 2.2.2 Equivalent user applications available (e.g. Call Log, Speed Dial, Web) for 4602/10/20/21SW
 • Refer to the 4602 R 1.1 to 4602 2.2.2 Conversion Job Aid on Avaya Support or the Anatomy of a Successful Cut websites.
 • One-X endpoints will support the SIP protocol in the September release.
 – Administration is done via the 46xxsettings.txt file and not an individual phone web interface
• Hardware
 – Same phone for H.323 and SIP
 – H.323 is the default protocol from the factory
 – Protocol (H.323 or SIP) is selected from the keypad (MUTE 744 #) or by the type of 46xxsettings.txt file
• TFTP, HTTP, and HTTPS are supported for file downloads
• CODECS supported
 – G.711 mu/a (All Avaya SIP Phones)
 – G.729B (SIP Softphone Only)
 – G.729A (46xx SIP phones Only)
Dial Plan example

- [2-4]xxx: Four-digit dial extensions, with valid extensions starting with 2, 3, or 4;
- [68]xxx: Four-digit dial extensions, with valid extensions starting with 6 or 8;
- 9Z11xxxxxxxxx: Network Access Code (“9 for an outside line”), followed by dial tone, followed by any string of 11 digits— typical instance of Automatic Route Selection (ARS) in the US
Avaya SIP Softphone R2.1
Overview Description

Avaya SIP Softphone R2.1

- Avaya SIP Softphone is a generic SIP endpoint with extras
 - Enhanced Conferencing features
 - Additional CM-based features such as Priority Call, Call Forwarding, and other AST features described in slide 78
 - Implements SIP for telephony, IM, and presence
 - Network-based contact store and access control lists via SES/PPM
 - Desktop integration with Microsoft Outlook, Lotus Notes, LDAP, and Microsoft Internet Explorer
 - Additional Desktop integration capabilities with Microsoft Smart Tags
 - Bluetooth Integration
- Continues to expand upon the user interface introduced in SIP Softphone R2
- Supports Road Warrior configuration only
 - No Telecommuter
 - No Shared Control
- Can discover configuration settings (by accessing 46xxsettings.txt file via HTTP)
Avaya SIP Softphone - User Interface (cont.)

- Features are provisioned in Communication Manager
- Feature Panel lists available features
Proxy and License Server

- SIP Softphone will try to find a Proxy and license server through DHCP settings along with other parameters.
- After initial config, the “Discover” feature is available from Settings -> Server -> Discover.
• During initial configuration, SIP Softphone will look for Option 176 in the DHCP scope

• SIP Softphone can obtain information about the SIP server address, license server address, and LDAP directory by using DHCP (and the “Discover function) to obtain the 46xxsettings.txt file used by the IP Telephones. SIP Softphone will use the HTTP server address provided in DHCP OPTION 176 to find the 46xxsettings.txt file. SIP Softphone will then read the following values from that file:
 - SIPROXYSRVR - This is the address of the SIP Proxy/Registrar
 - WEBLMSRVR - This is the address of the Licensing server.
 - SP_DI RSRVR - This is the address of the LDAP server.
 - SP_DI RSRVPORT - This is the port of the LDAP server.
 - SP_DI RTOPDN - This is the search root of the LDAP server.
• Setup Profiles – select the Profile you wish to use when you login
• Profile settings are similar to “Bandwidth configuration” from IP Softphone
• Used for CODEC advertisement, not the physical connection
 – Connection Type
 • LAN – 711mu/a, 729a, and 723
 • Cable – 729a and 723
 • 28,800 or faster – 723 only
• Dialing Rules
Voice Mail Config

- Check the box for Enable voicemail integration
- Enables SIP Softphone to perform a function upon clicking on the voicemail icon while registered
- Envelope turns bright red when a voice mail is waiting to be picked up